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On the Existence of Discrete Wigner Distributions
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Abstract—Among the myriad of time-frequency distributions,
the Wigner distribution stands alone in satisfying many desirable
mathematical properties. Attempts to extend definitions of the
Wigner distribution to discrete signals have not been completely
successful. In this letter, we propose an alternative definition
for the Wigner distribution, which has a clear extension to
discrete signals. Under this definition, we show that the Wigner
distribution does not exist for certain classes of discrete signals.

I. INTRODUCTION

I N signal processing, one is often interested in four different
types of signals characterized by being either continuous or

discrete, and by being either aperiodic or periodic.1 The four
types of signals are listed in Table I along with the signal
properties in the time domain and the corresponding Fourier
transform. The Wigner (or Wigner–Ville) distribution was
originally defined for type I signals and is usually presented
in the following form [1]–[5]:

(1)

The Wigner distribution satisfies many desirable properties
proposed for time-frequency distributions [4], [5].

Since there are four types of Fourier transforms, it is
reasonable to assume that there could potentially be four
types of Wigner distributions. To avoid confusion, the original
Wigner distribution will be referred to as the type I Wigner
distribution and the potential, discrete Wigner distributions
will be referred to as the type II, III, and IV Wigner distri-
butions. It is straightforward to compute samples of the type
I Wigner distribution in the time-frequency plane [6], [7], but
this is not necessarily the same as computing a type II Wigner
distribution. For comparison, note that the type II spectrogram
is not a sampled version of the type I spectrogram [8].

II. DEFINITIONS OF THE WIGNER DISTRIBUTION

The Wigner distribution was originally defined [1], [2] as
in (1) with no obvious means for extending the definition to
the three types of discrete signals presented above. Here, we
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1We will usex(�) to denote signals of all types and let the context indicate

the type.

TABLE I
FOUR TYPES OF SIGNALS

TABLE II
SIX PROPERTIES FORTIME-FREQUENCY DISTRIBUTIONS

briefly present three methods that have been used to create
discrete Wigner distributions and indicate their shortcomings.
We then present a fourth method that extends easily to the
three types of discrete signals.

Claasen and Mecklenbräuker [6] used discretization meth-
ods for computing a Wigner distribution from an oversampled
signal. While they are computing samples of a type I Wigner
distribution, they are not computing a type II Wigner distribu-
tion since it does not satisfy properties corresponding to type
II signals.

Richmanet al. used a group theoretic definition to create
type IV Wigner distributions [9]. They define two type IV
Wigner distributions, one for signals with an even length
period and another for signals with an odd length period. The
difference is due to the fact that the element exists for
the odd case and not for the even case. Their even length
distribution is qualitatively very different from their odd length
distribution (the former is qualitatively similar to the type IV
Margenau–Hill distribution [8]). Their even length distribution
also does not satisfy as many properties as their odd length
distribution (as will be shown below).

McLaughlinet al. [10] and Narayananet al. [11] attempted
to apply operator theory to create a type IV Wigner distribu-
tion, but they were unable to extend the theory to type IV
signals.

Our definition is based on the following result from [4].
Theorem: The Wigner distribution is the only time-

frequency distribution for type I signals that satisfies the
six properties in Table II.
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Proof: Properties (i) and (ii) limit us to distributions in
the Cohen class [4], [5]

where
, and .

The kernel thatcorresponds to the Wigner distribution is
. The Cohen class is not usually presented

in this form, but the above form is easier to apply to the three
types of discrete signals. Properties (iii) and (iv) constrain
the kernel, respectively, to be of the form and

for a complex function . Together, they
constrain the kernel to be of the form or

for a real function . Adding property
(v) further constrains the kernel such that
for a real constant . Finally, adding property (vi) requires
that .

III. T YPE II WIGNER DISTRIBUTION

The above six properties are easily converted to type II
signals and here we apply the above theorem to attempt to
define a type II Wigner distribution. Properties (i) and (ii)
restrict us to the type II Cohen class [8]

where , and are defined analogous to the above.
Properties (iii) and (iv) constrain the kernel to be of the
form for some function . Adding
property (v) requires that for . However,
for all , the distribution will not be real. Thus, the type
II Wigner distribution does not exist under this definition.

There are type II distributions that satisfy all but one of the
above properties. The type II Page and the type II Rihaczek
distributions [8] satisfy all of the properties except for (v) and
(vi), respectively.

IV. TYPE IV WIGNER DISTRIBUTION

Here, we apply the above theorem to attempt to define a
type IV Wigner distribution. Properties (i) and (ii) restrict us
to the type IV Cohen class [8]

where , and are defined analogous to the above,
and all functions are periodic. Properties (iii) and (iv) constrain
the kernel to be of the form for some

(a) (b)

Fig. 1. Examples of the kernel function for even and odd length type IV
signals. The solid lines denote the axes and the dashed lines denote one
period. (a) Type IV: odd length. (b) Type IV: even length.

function . Adding property (v) requires that
for and are relatively prime (see
Fig. 1).

For odd, there exists exactly one value ofthat gives a
real distribution. This value is and equals for
odd . The resulting distribution is the one originally defined
by Richmanet al. [9] and corresponds to the kernel function

. In Fig. 1(a), we show an example
for where the open circles correspond to a value of
one and the filled circles correspond to a value of zero. We
will call this distribution the type IV Wigner distribution (for
signals with an odd length period).

For even, there are no values of that give a real
distribution. Thus, the type IV Wigner distribution does not
exist under this definition for signals with an even length
period. The distribution defined by Richmanet al. [9] for even
length signals does not satisfy properties (iv) and (v).

V. CONCLUSION

The classical Wigner distribution was originally defined [1],
[2] as presented in (1), although one can put forth innumerable
definitions of the Wigner distribution, which are equivalent to
the original. However, previous definitions [6], [9]–[11] have
not been able to be applied to all types of discrete signals.

In this letter, we propose an alternative definition for the
Wigner distribution, based on fundamental properties, that
is easily applied to discrete signals. Under this definition,
we show that the Wigner distribution exists only for type I
signals and for type IV signals with an odd length period. The
former corresponds to the classical definition, and the latter
corresponds to the definition given by Richmanet al. [9].

One could argue that another set of properties might pro-
vide a different answer than obtained here. However, since
the chosen properties are fundamental in nature and have a
clear extension to discrete signals, we argue that a distribu-
tion that does not satisfy them should not be considered a
Wigner distribution. A Matlab software package that com-
putes all distributions mentioned in this letter is available at
http://mdsp.bu.edu/jeffo.
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